情感分析
Last updated
Last updated
constraint
latency: how long it takes a single request
throughput: how many request can be handled in a given amount of time
收集data
GDPR(privacy),数据脱敏,数据加密
分析data。考虑label的distribution
考虑feature是不是只有text的,还是有numeric,nominal的。missing data怎么处理
text的feature怎么生成embedding,好处坏处有哪些。(word embedding, fasttext, BERT)
numeric的missing data,如何normalize
实际工作中,都是每个ML组都有自己不同的embedding set。互相使用别人的embedding set。怎么pre-train, fine-train, 怎么combine feature
模型选择: 传统模型还是神经网络
考虑系统方面的constraint, 如prediction latency, memory. 怎么合理的牺牲模型的性能以换取constraint方面的benefit
模型蒸馏
train, test, validation split data
evaluation matrix
feature的ABtest怎么做
GPU or CPU
单机多进程 or Spark + Broadcast, KF-serving
dynamic batching
Dynamic Model Input (输入数据的长度)
quantization (cast)
distill/or smaller model
onnx
不同的硬件和推理引擎兼容
进一步优化: 算子融合、内存优化和硬件加速
caching responses to reduce the request
hardware usage
serving usage: qps
model performance
business object
train/test data和product上distribution不一样怎么办
data distribution 随着时间改变怎么办