Twitter推荐
Last updated
Last updated
twitter比较关注social graph的挖掘
BG & product
homepage or related item recommendation
user: follow
item: text, image, video
engagement: click, like, comment, share
objective
increase the engagement
constraint
scale of user and item
latency
召回、精排、规则多样性重排、混排
Fetch the best Tweets from different recommendation sources in a process called candidate sourcing.
Rank each Tweet using a machine learning model.
Apply heuristics and filters, such as filtering out Tweets from users you’ve blocked, NSFW content, and Tweets you’ve already seen.
user
demographics
item
text
engagement
impression, engagement
context
device
time
label
dense
sparse
In-Network召回
Out-of-Network 召回
MaskNet
过滤已屏蔽用户的推文、NSFW内容和已看过的推文
offline
recall@k, hit_rate
online
ctr
batch service or online service
A/B testing