Twitter推荐
twitter比较关注social graph的挖掘
1. requirements
use case & product
homepage or related item recommendation
user: follow
item: text, image, video
engagement: click, like, comment, share
objective
increase the engagement
constraint
scale of user and item
latency
2. ML task & pipeline
召回、精排、规则多样性重排、混排

Fetch the best Tweets from different recommendation sources in a process called candidate sourcing.
Rank each Tweet using a machine learning model.
Apply heuristics and filters, such as filtering out Tweets from users you’ve blocked, NSFW content, and Tweets you’ve already seen.
3. data collection
user
demographics
item
text
engagement
impression, engagement
context
device
time
label
4. feature
dense
sparse
5. model
5.1 retrieval
In-Network召回
Out-of-Network 召回
5.2 ranking
MaskNet
5.3 reranking
过滤已屏蔽用户的推文、NSFW内容和已看过的推文
6. evaluation
offline
recall@k, hit_rate
online
ctr
7. deploy & serving
batch service or online service
A/B testing
8. monitoring & maintenance
9. 优化与问答
reference
Last updated