大模型Agent
Agents are programs where LLM outputs control the workflow, they are useful when you need an LLM to determine the workflow of an app.
1. requirements
功能性
编译型 (Dify) 固定工作流 or 解释型 (Manus) 自主规划决策
非功能
latency
throughput
2. ML task & Pipeline
Agent 选择
Predefined Agents
Dynamically Orchestrated Agents
Agent component
LLM (具备function call, long context 能力)
Router: LLM output determines an if/else switch
Tools: Plugins, Function Call, Code Interpreter
Planning: CoT, ToT, ReAct
Memory: 长期记忆 or 短期记忆
Self-Reflection / Self-Correction
Multistep Agent: LLM output controls iteration and program continuation
Multi-agent: One agentic workflow can start another agentic workflow
Service:
LLM Chat service (ray + VLLM)
Agent service
会话管理和上下文管理
Tool service
3. Data
4. Model
5. evaluation
6. deploy & service
推理加速
KV cache
speculative decoding
Flash attention
模型量化
7. monitor & maintain
QA
如何训练function call?
数据集SFT 或 强化学习
如何解决幻觉?
如何解决工具调用,调用失败或返回异常数据?
Reference
https://cdn.openai.com/business-guides-and-resources/a-practical-guide-to-building-agents.pdf
https://blog.langchain.dev/how-to-think-about-agent-frameworks/
https://www.anthropic.com/engineering/building-effective-agents
course
Last updated