mle-interview
  • 面试指南
  • 数据结构与算法
    • 列表
      • 912. Sort an Array
      • 215. Kth Largest Element
      • 977. Squares of a Sorted Array
      • 605. Can Place Flowers
      • 59. Spiral Matrix II
      • 179. Largest Number
      • 31. Next Permutation
    • 二分查找
      • 704. Binary Search
      • 69. Sqrt(x)
      • 278. First Bad Version
      • 34. Find First and Last Position of Element in Sorted Array
      • 33. Search in Rotated Sorted Array
      • 81. Search in Rotated Sorted Array II
      • 162. Find Peak Element
      • 4. Median of Two Sorted Arrays
      • 1095. Find in Mountain Array
      • 240. Search a 2D Matrix II
      • 540. Single Element in a Sorted Array
      • 528. Random Pick with Weight
      • 1300. Sum of Mutated Array Closest to Target
      • 410. Split Array Largest Sum
      • 1044. Longest Duplicate Substring
      • *644. Maximum Average Subarray II
      • *1060. Missing Element in Sorted Array
      • *1062. Longest Repeating Substring
      • *1891. Cutting Ribbons
    • 双指针
      • 26. Remove Duplicate Numbers in Array
      • 283. Move Zeroes
      • 75. Sort Colors
      • 88. Merge Sorted Arrays
      • 167. Two Sum II - Input array is sorted
      • 11. Container With Most Water
      • 42. Trapping Rain Water
      • 15. 3Sum
      • 16. 3Sum Closest
      • 18. 4Sum
      • 454. 4Sum II
      • 409. Longest Palindrome
      • 125. Valid Palindrome
      • 647. Palindromic Substrings
      • 209. Minimum Size Subarray Sum
      • 5. Longest Palindromic Substring
      • 395. Longest Substring with At Least K Repeating Characters
      • 424. Longest Repeating Character Replacement
      • 76. Minimum Window Substring
      • 3. Longest Substring Without Repeating Characters
      • 1004. Max Consecutive Ones III
      • 1658. Minimum Operations to Reduce X to Zero
      • *277. Find the Celebrity
      • *340. Longest Substring with At Most K Distinct Characters
    • 链表
      • 203. Remove Linked List Elements
      • 19. Remove Nth Node From End of List
      • 876. Middle of the Linked List
      • 206. Reverse Linked List
      • 92. Reverse Linked List II
      • 24. Swap Nodes in Pairs
      • 707. Design Linked List
      • 148. Sort List
      • 160. Intersection of Two Linked Lists
      • 141. Linked List Cycle
      • 142. Linked List Cycle II
      • 328. Odd Even Linked List
    • 哈希表
      • 706. Design HashMap
      • 1. Two Sum
      • 146. LRU Cache
      • 128. Longest Consecutive Sequence
      • 73. Set Matrix Zeroes
      • 380. Insert Delete GetRandom O(1)
      • 49. Group Anagrams
      • 350. Intersection of Two Arrays II
      • 299. Bulls and Cows
      • *348. Design Tic-Tac-Toe
    • 字符串
      • 242. Valid Anagram
      • 151. Reverse Words in a String
      • 205. Isomorphic Strings
      • 647. Palindromic Substrings
      • 696. Count Binary Substrings
      • 28. Find the Index of the First Occurrence in a String
      • *186. Reverse Words in a String II
    • 栈与队列
      • 225. Implement Stack using Queues
      • 54. Spiral Matrix
      • 155. Min Stack
      • 232. Implement Queue using Stacks
      • 150. Evaluate Reverse Polish Notation
      • 224. Basic Calculator
      • 20. Valid Parentheses
      • 1472. Design Browser History
      • 1209. Remove All Adjacent Duplicates in String II
      • 1249. Minimum Remove to Make Valid Parentheses
      • *281. Zigzag Iterator
      • *1429. First Unique Number
      • *346. Moving Average from Data Stream
    • 优先队列/堆
      • 692. Top K Frequent Words
      • 347. Top K Frequent Elements
      • 973. K Closest Points
      • 23. Merge K Sorted Lists
      • 264. Ugly Number II
      • 378. Kth Smallest Element in a Sorted Matrix
      • 295. Find Median from Data Stream
      • 767. Reorganize String
      • 1438. Longest Continuous Subarray With Absolute Diff Less Than or Equal to Limit
      • 895. Maximum Frequency Stack
      • 1705. Maximum Number of Eaten Apples
      • *1086. High Five
    • 深度优先DFS
      • 二叉树
      • 543. Diameter of Binary Tree
      • 101. Symmetric Tree
      • 124. Binary Tree Maximum Path Sum
      • 226. Invert Binary Tree
      • 104. Maximum Depth of Binary Tree
      • 951. Flip Equivalent Binary Trees
      • 236. Lowest Common Ancestor of a Binary Tree
      • 987. Vertical Order Traversal of a Binary Tree
      • 572. Subtree of Another Tree
      • 863. All Nodes Distance K in Binary Tree
      • 1110. Delete Nodes And Return Forest
      • 230. Kth Smallest element in a BST
      • 98. Validate Binary Search Tree
      • 235. Lowest Common Ancestor of a Binary Search Tree
      • 669. Trim a Binary Search Tree
      • 700. Search in a Binary Search Tree
      • 108. Convert Sorted Array to Binary Search Tree
      • 450. Delete Node in a BST
      • 938. Range Sum of BST
      • *270. Closest Binary Search Tree Value
      • *333. Largest BST Subtree
      • *285. Inorder Successor in BST
      • *1485. Clone Binary Tree With Random Pointer
      • 回溯
      • 39. Combination Sum
      • 78. Subsets
      • 46. Permutation
      • 77. Combinations
      • 17. Letter Combinations of a Phone Number
      • 51. N-Queens
      • 93. Restore IP Addresses
      • 22. Generate Parentheses
      • 856. Score of Parentheses
      • 301. Remove Invalid Parentheses
      • 37. Sodoku Solver
      • 图DFS
      • 126. Word Ladder II
      • 212. Word Search II
      • 79. Word Search
      • 399. Evaluate Division
      • 1376. Time Needed to Inform All Employees
      • 131. Palindrome Partitioning
      • 491. Non-decreasing Subsequences
      • 698. Partition to K Equal Sum Subsets
      • 526. Beautiful Arrangement
      • 139. Word Break
      • 377. Combination Sum IV
      • 472. Concatenated Words
      • 403. Frog Jump
      • 329. Longest Increasing Path in a Matrix
      • 797. All Paths From Source to Target
      • 695. Max Area of Island
      • 341. Flatten Nested List Iterator
      • 394. Decode String
      • *291. Word Pattern II
      • *694. Number of Distinct Islands
      • *1274. Number of Ships in a Rectangle
      • *1087. Brace Expansion
    • 广度优先BFS
      • 102. Binary Tree Level Order Traversal
      • 103. Binary Tree Zigzag Level Order Traversal
      • 297. Serialize and Deserialize Binary Tree
      • 310. Minimum Height Trees
      • 127. Word Ladder
      • 934. Shortest Bridge
      • 200. Number of Islands
      • 133. Clone Graph
      • 130. Surrounded Regions
      • 752. Open the Lock
      • 815. Bus Routes
      • 1091. Shortest Path in Binary Matrix
      • 542. 01 Matrix
      • 1293. Shortest Path in a Grid with Obstacles Elimination
      • 417. Pacific Atlantic Water Flow
      • 207. Course Schedule
      • 210. Course Schedule II
      • 787. Cheapest Flights Within K Stops
      • 444. Sequence Reconstruction
      • 994. Rotting Oranges
      • 785. Is Graph Bipartite?
      • *366. Find Leaves of Binary Tree
      • *314. Binary Tree Vertical Order Traversal
      • *269. Alien Dictionary
      • *323. Connected Component in Undirected Graph
      • *490. The Maze
    • 动态规划
      • 70. Climbing Stairs
      • 72. Edit Distance
      • 377. Combination Sum IV
      • 1335. Minimum Difficulty of a Job Schedule
      • 97. Interleaving String
      • 472. Concatenated Words
      • 403. Frog Jump
      • 674. Longest Continuous Increasing Subsequence
      • 62. Unique Paths
      • 64. Minimum Path Sum
      • 368. Largest Divisible Subset
      • 300. Longest Increasing Subsequence
      • 354. Russian Doll Envelopes
      • 121. Best Time to Buy and Sell Stock
      • 132. Palindrome Partitioning II
      • 312. Burst Balloons
      • 1143. Longest Common Subsequence
      • 718. Maximum Length of Repeated Subarray
      • 174. Dungeon Game
      • 115. Distinct Subsequences
      • 91. Decode Ways
      • 639. Decode Ways II
      • 712. Minimum ASCII Delete Sum for Two Strings
      • 221. Maximal Square
      • 1277. Count Square Submatrices with All Ones
      • 198. House Robber
      • 213. House Robber II
      • 1235. Maximum Profit in Job Scheduling
      • 740. Delete and Earn
      • 87. Scramble String
      • 1140. Stone Game II
      • 322. Coin Change
      • 518. Coin Change II
      • 1048. Longest String Chain
      • 44. Wildcard Matching
      • 10. Regular Expression Matching
      • 32. Longest Valid Parentheses
      • 1043. Partition Array for Maximum Sum
      • *256. Paint House
      • 926. Flip String to Monotone Increasing
      • *1062. Longest Repeating Substring
      • *1216. Valid Palindrome III
    • 贪心
      • 56. Merge Intervals
      • 621. Task Scheduler
      • 135. Candy
      • 376. Wiggle Subsequence
      • 55. Jump Game
      • 134. Gas Station
      • 1005. Maximize Sum Of Array After K Negations
      • 406. Queue Reconstruction by Height
      • 452. Minimum Number of Arrows to Burst Balloons
      • 738. Monotone Increasing Digits
    • 单调栈
      • 739. Daily Temperatures
      • 503. Next Greater Element II
      • 901. Online Stock Span
      • 85. Maximum Rectangle
      • 84. Largest Rectangle in Histogram
      • 907. Sum of Subarray Minimums
      • 239. Sliding Window Maximum
    • 前缀和
      • 53. Maximum Subarray
      • 523. Continuous Subarray Sum
      • 304. Range Sum Query 2D - Immutable
      • 1423. Maximum Points You Can Obtain from Cards
      • 1031. Maximum Sum of Two Non-Overlapping Subarrays
    • 并查集
      • 684. Redundant Connection
      • 721. Accounts Merge
      • 547. Number of Provinces
      • 737. Sentence Similarity II
      • *305. Number of Islands II
    • 字典树trie
      • 208. Implement Trie
      • 211. Design Add and Search Words Data Structure
      • 1268. Search Suggestions System
      • *1166. Design File System
      • *642. Design Search Autocomplete System
    • 扫描线sweep line
      • 253. Meeting Room II
      • 1094. Car Pooling
      • 218. The Skyline Problem
      • *759. Employee Free Time
    • tree map
      • 729. My Calendar I
      • 981. Time Based Key-Value Store
      • 846. Hand of Straights
      • 480. Sliding Window Median
      • 318. Count of Smaller Numbers After Self
    • 数学类
      • 50. Pow(x, n)
      • *311. Sparse Matrix Multiplication
      • 382. Linked List Random Node
      • 398. Random Pick Index
      • 29. Divide Two Integers
    • 设计类
      • 1603. Design Parking System
      • 355. Design Twitter
      • 1396. Design Underground System
      • *359. Logger Rate Limiter
      • *353. Design Snake Game
      • *379. Design Phone Directory
      • *588. Design In-Memory File System
      • *1244. Design A Leaderboard
    • SQL
  • 机器学习
    • 数学基础
    • 评价指标
    • 线性回归
    • 逻辑回归
    • 树模型
    • 深度学习
    • 支持向量机
    • KNN
    • 无监督学习
    • k-means
    • 强化学习 RL
    • 自然语言处理 NLP
    • 大语言模型 LLM
    • 机器视觉 CV
    • 多模态 MM
    • 分布式机器学习
    • 推荐系统
    • 异常检测与风控
    • 模型解释性
    • 多任务学习
    • MLops
    • 特征工程
    • 在线学习
    • 硬件 cuda/triton
    • 产品case分析
    • 项目deep dive
    • 机器学习代码汇总
  • 系统设计
    • 面向对象设计
      • 电梯设计
      • 停车场设计
      • Unix文件系统设计
    • 系统设计
      • 设计社交网站Twitter
      • 设计视频网站Youtube
      • 短网址系统
      • 爬虫系统
      • 任务调度系统
      • 日志系统
      • 分布式缓存
      • 广告点击聚合系统
      • webhook
    • 机器学习系统设计
      • 推荐系统
      • 搜索引擎
      • Youtube视频推荐
      • Twitter推荐
      • 广告点击预测
      • 新闻推送推荐
      • POI推荐
      • Youtube视频搜索
      • 有害内容检测
      • 大模型RAG
      • 大模型Agent
      • 信贷风控
      • 朋友推荐
      • 去重复性/版权检测
      • 情感分析
      • 目标检测
      • 问答系统
      • 知识图谱问答
  • 行为面试
    • 领导力法则
    • 问答举例
  • 案例分享
    • 准备工作
    • 面试小抄
    • 面试之后
Powered by GitBook
On this page
  • 1. requirements
  • 2. ML task & pipeline
  • 3. data collection
  • 4. feature
  • 5. model
  • 6. evaluation
  • 7. deploy & serving
  • 8. monitoring & maintenance
  • reference
  1. 系统设计
  2. 机器学习系统设计

搜索引擎

搜索和推荐都是向用户提供用户需要的信息,搜索,由用户检索"拉动",包含"Query";推荐的基本是"推动",由系统进行推送。

有的业务场景中,通过q2i的用户反馈信息进行排序,进一步提升业务指标。

1. requirements

产品/功能/use cases

  • Is it a generalized search engine (like google) or specialized (like amazon product)?

  • What are the specific use cases and scenarios where it will be applied?

  • What are the system requirements (such as response time, accuracy, scalability, and integration with existing systems or platforms)?

  • How many languages needs to be supported?

  • What types of items (products) are available on the platform, and what attributes are associated with them?

  • What are the common user search behaviors and patterns? Do users frequently use filters, sort options, or advanced search features?

  • Are there specific search-related challenges unique to the use case (e-commerce)? such as handling product availability, pricing, and customer reviews?

目标类

  • What is the primary (business) objective of the search system?

  • Personalized? not required

约束类

  • Is their any data available? What format?

  • response time, accuracy, scalability (50M DAU)

  • budget limitations, hardware limitations, or legal and privacy constraints

  • What is the expected scale of the system in terms of data and user interactions?

2. ML task & pipeline

搜索,先对文档进行预处理并建立索引,根据用户查询,从索引中查询匹配,然后排序返回。

搜索引擎的六个核心组件:爬虫、解析、索引、链接关系分析、查询处理、排名.

query understanding

  • 预处理,无效字符、表情直接丢掉,截取前n个字等

  • 纠错,包括错误检测和自动纠错,目前的方法有:噪声信道模型、序列标注模型、seq2seq模型

  • 分词&词性标注,一般都是现成的分词工具+用户词典来做了

  • 词权重计算,计算每个词的重要性,一般会根据用户的点击日志离线算好

  • 同义词

  • 意图分析,为了意图可以扩充,所以一般做成很多个二分类任务,方法比较多,最常见的还是CNN,也有BERT蒸馏到CNN的

  • 实体识别,识别搜索词中的实体词,一般也是序列标注模型BILSTM+CRF,或者BERT蒸馏到BILSTM

  • 丢词,因为目前的搜索引擎更多的是还是以文本匹配的方式进行文档召回,所以如果query中有一些语义不重要的词,那就会丢弃了,并且往往会有多次丢词,比如:北京著名的温泉,在进行召回的时候,会先丢弃“的”字,以“北京、著名、温泉”三个词去和文档集求交集,如果没有好的结果,这三个词会继续丢词,以“北京、温泉”和文档集求交集,这里一般也是用序列标注来做

  • Query改写,其实丢词&纠错也都算改写的一种,不过这里的改写是指找到原始Query的一些等价或者近似Query,规则的方法比较多,也有用seq2seq的

整个搜索召回的流程大致如下,以搜索“北京著名的温泉”为例:

  1. 对输入的查询进行预处理,比如特殊字符处理、全半角转换。

  2. 查询分词和词性标注,“北京”是地名、“著名”是形容词、“的”是助词、“温泉”是名词。

  3. 基于词表的一次丢词,“的”作为停用词被丢弃。

  4. 同义词改写,对分词的Term匹配同义词,如“温泉”和“热泉”是同义词。

  5. 在同义词改写的同时分析chunk tag,“北京”是城市、“著名”是品类修饰词、“温泉”是品类词。

  6. 基于Chunk分析的结果识别Query整体为品类意图。

  7. 同时计算Term在Query中的重要度,“北京”为0.48、“著名”为0.39、“温泉”为0.55。

  8. 基于品类意图确定检索字段和相关性计算的逻辑,比如距离加权。

  9. 由于所有POI的文本字段中都不包含“著名”,一次召回无结果,因此扩大POI范围,在无合作POI集合中进行二次检索。

  10. 由于无合作POI的文本字段也不包含“著名”,二次召回也无结果,因此基于Chunk丢弃品类修饰词“著名”,然后进行三次检索。

  11. 最终返回搜索结果列表,“顺景温泉”、“九华山庄”等北京著名温泉。

3. data collection

  • The ranking was good if the user clicked on some link and spent significant time reading the page.

  • The ranking was not so good if the user clicked on a link to a result and then hit “back” quickly.

  • The ranking was bad if the user clicked on the “next page” link.

4. feature

  • user

  • context

  • query

  • item

  • user-item

  • query-item

5. model

  • 多策略关键词挖掘(SPU挖掘/Searchable Product Unit)

  • Point-wise LTR, pairwise LRT

  • rerank

6. evaluation

offline

online

  • 相关性

  • 内容质量

  • 时效性

  • 个性化

7. deploy & serving

A/B test

8. monitoring & maintenance

reference

  • Ranking Relevance in Yahoo Search,KDD 2016

  • Poly-encoders: Transformer Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring,ICLR 2020

  • Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval, ICLR 2021

Previous推荐系统NextYoutube视频推荐

Last updated 27 days ago

Architecture of Nautilus, the new Dropbox search engine
腾讯搜索词推荐算法探索实践
美团搜索中查询改写技术的探索与实践
搜索广告召回技术在美团的实践
Embedding-based Retrieval in Facebook Search, KDD 2020
Listing Embeddings in Search Ranking
COTA: Improving Uber Customer Care with NLP & Machine Learning
Scaling Uber’s Customer Support Ticket Assistant (COTA) System with Deep Learning
美团外卖搜索基于Elasticsearch的优化实践