mle-interview
  • 面试指南
  • 数据结构与算法
    • 列表
      • 912. Sort an Array
      • 215. Kth Largest Element
      • 977. Squares of a Sorted Array
      • 605. Can Place Flowers
      • 59. Spiral Matrix II
      • 179. Largest Number
      • 31. Next Permutation
    • 二分查找
      • 704. Binary Search
      • 69. Sqrt(x)
      • 278. First Bad Version
      • 34. Find First and Last Position of Element in Sorted Array
      • 33. Search in Rotated Sorted Array
      • 81. Search in Rotated Sorted Array II
      • 162. Find Peak Element
      • 4. Median of Two Sorted Arrays
      • 1095. Find in Mountain Array
      • 240. Search a 2D Matrix II
      • 540. Single Element in a Sorted Array
      • 528. Random Pick with Weight
      • 1300. Sum of Mutated Array Closest to Target
      • 410. Split Array Largest Sum
      • 1044. Longest Duplicate Substring
      • *644. Maximum Average Subarray II
      • *1060. Missing Element in Sorted Array
      • *1062. Longest Repeating Substring
      • *1891. Cutting Ribbons
    • 双指针
      • 26. Remove Duplicate Numbers in Array
      • 283. Move Zeroes
      • 75. Sort Colors
      • 88. Merge Sorted Arrays
      • 167. Two Sum II - Input array is sorted
      • 11. Container With Most Water
      • 42. Trapping Rain Water
      • 15. 3Sum
      • 16. 3Sum Closest
      • 18. 4Sum
      • 454. 4Sum II
      • 409. Longest Palindrome
      • 125. Valid Palindrome
      • 647. Palindromic Substrings
      • 209. Minimum Size Subarray Sum
      • 5. Longest Palindromic Substring
      • 395. Longest Substring with At Least K Repeating Characters
      • 424. Longest Repeating Character Replacement
      • 76. Minimum Window Substring
      • 3. Longest Substring Without Repeating Characters
      • 1004. Max Consecutive Ones III
      • 1658. Minimum Operations to Reduce X to Zero
      • *277. Find the Celebrity
      • *340. Longest Substring with At Most K Distinct Characters
    • 链表
      • 203. Remove Linked List Elements
      • 19. Remove Nth Node From End of List
      • 876. Middle of the Linked List
      • 206. Reverse Linked List
      • 92. Reverse Linked List II
      • 24. Swap Nodes in Pairs
      • 707. Design Linked List
      • 148. Sort List
      • 160. Intersection of Two Linked Lists
      • 141. Linked List Cycle
      • 142. Linked List Cycle II
      • 328. Odd Even Linked List
    • 哈希表
      • 706. Design HashMap
      • 1. Two Sum
      • 146. LRU Cache
      • 128. Longest Consecutive Sequence
      • 73. Set Matrix Zeroes
      • 380. Insert Delete GetRandom O(1)
      • 49. Group Anagrams
      • 350. Intersection of Two Arrays II
      • 299. Bulls and Cows
      • *348. Design Tic-Tac-Toe
    • 字符串
      • 242. Valid Anagram
      • 151. Reverse Words in a String
      • 205. Isomorphic Strings
      • 647. Palindromic Substrings
      • 696. Count Binary Substrings
      • 28. Find the Index of the First Occurrence in a String
      • *186. Reverse Words in a String II
    • 栈与队列
      • 225. Implement Stack using Queues
      • 54. Spiral Matrix
      • 155. Min Stack
      • 232. Implement Queue using Stacks
      • 150. Evaluate Reverse Polish Notation
      • 224. Basic Calculator
      • 20. Valid Parentheses
      • 1472. Design Browser History
      • 1209. Remove All Adjacent Duplicates in String II
      • 1249. Minimum Remove to Make Valid Parentheses
      • *281. Zigzag Iterator
      • *1429. First Unique Number
      • *346. Moving Average from Data Stream
    • 优先队列/堆
      • 692. Top K Frequent Words
      • 347. Top K Frequent Elements
      • 973. K Closest Points
      • 23. Merge K Sorted Lists
      • 264. Ugly Number II
      • 378. Kth Smallest Element in a Sorted Matrix
      • 295. Find Median from Data Stream
      • 767. Reorganize String
      • 1438. Longest Continuous Subarray With Absolute Diff Less Than or Equal to Limit
      • 895. Maximum Frequency Stack
      • 1705. Maximum Number of Eaten Apples
      • *1086. High Five
    • 深度优先DFS
      • 二叉树
      • 543. Diameter of Binary Tree
      • 101. Symmetric Tree
      • 124. Binary Tree Maximum Path Sum
      • 226. Invert Binary Tree
      • 104. Maximum Depth of Binary Tree
      • 951. Flip Equivalent Binary Trees
      • 236. Lowest Common Ancestor of a Binary Tree
      • 987. Vertical Order Traversal of a Binary Tree
      • 572. Subtree of Another Tree
      • 863. All Nodes Distance K in Binary Tree
      • 1110. Delete Nodes And Return Forest
      • 230. Kth Smallest element in a BST
      • 98. Validate Binary Search Tree
      • 235. Lowest Common Ancestor of a Binary Search Tree
      • 669. Trim a Binary Search Tree
      • 700. Search in a Binary Search Tree
      • 108. Convert Sorted Array to Binary Search Tree
      • 450. Delete Node in a BST
      • 938. Range Sum of BST
      • *270. Closest Binary Search Tree Value
      • *333. Largest BST Subtree
      • *285. Inorder Successor in BST
      • *1485. Clone Binary Tree With Random Pointer
      • 回溯
      • 39. Combination Sum
      • 78. Subsets
      • 46. Permutation
      • 77. Combinations
      • 17. Letter Combinations of a Phone Number
      • 51. N-Queens
      • 93. Restore IP Addresses
      • 22. Generate Parentheses
      • 856. Score of Parentheses
      • 301. Remove Invalid Parentheses
      • 37. Sodoku Solver
      • 图DFS
      • 126. Word Ladder II
      • 212. Word Search II
      • 79. Word Search
      • 399. Evaluate Division
      • 1376. Time Needed to Inform All Employees
      • 131. Palindrome Partitioning
      • 491. Non-decreasing Subsequences
      • 698. Partition to K Equal Sum Subsets
      • 526. Beautiful Arrangement
      • 139. Word Break
      • 377. Combination Sum IV
      • 472. Concatenated Words
      • 403. Frog Jump
      • 329. Longest Increasing Path in a Matrix
      • 797. All Paths From Source to Target
      • 695. Max Area of Island
      • 341. Flatten Nested List Iterator
      • 394. Decode String
      • *291. Word Pattern II
      • *694. Number of Distinct Islands
      • *1274. Number of Ships in a Rectangle
      • *1087. Brace Expansion
    • 广度优先BFS
      • 102. Binary Tree Level Order Traversal
      • 103. Binary Tree Zigzag Level Order Traversal
      • 297. Serialize and Deserialize Binary Tree
      • 310. Minimum Height Trees
      • 127. Word Ladder
      • 934. Shortest Bridge
      • 200. Number of Islands
      • 133. Clone Graph
      • 130. Surrounded Regions
      • 752. Open the Lock
      • 815. Bus Routes
      • 1091. Shortest Path in Binary Matrix
      • 542. 01 Matrix
      • 1293. Shortest Path in a Grid with Obstacles Elimination
      • 417. Pacific Atlantic Water Flow
      • 207. Course Schedule
      • 210. Course Schedule II
      • 787. Cheapest Flights Within K Stops
      • 444. Sequence Reconstruction
      • 994. Rotting Oranges
      • 785. Is Graph Bipartite?
      • *366. Find Leaves of Binary Tree
      • *314. Binary Tree Vertical Order Traversal
      • *269. Alien Dictionary
      • *323. Connected Component in Undirected Graph
      • *490. The Maze
    • 动态规划
      • 70. Climbing Stairs
      • 72. Edit Distance
      • 377. Combination Sum IV
      • 1335. Minimum Difficulty of a Job Schedule
      • 97. Interleaving String
      • 472. Concatenated Words
      • 403. Frog Jump
      • 674. Longest Continuous Increasing Subsequence
      • 62. Unique Paths
      • 64. Minimum Path Sum
      • 368. Largest Divisible Subset
      • 300. Longest Increasing Subsequence
      • 354. Russian Doll Envelopes
      • 121. Best Time to Buy and Sell Stock
      • 132. Palindrome Partitioning II
      • 312. Burst Balloons
      • 1143. Longest Common Subsequence
      • 718. Maximum Length of Repeated Subarray
      • 174. Dungeon Game
      • 115. Distinct Subsequences
      • 91. Decode Ways
      • 639. Decode Ways II
      • 712. Minimum ASCII Delete Sum for Two Strings
      • 221. Maximal Square
      • 1277. Count Square Submatrices with All Ones
      • 198. House Robber
      • 213. House Robber II
      • 1235. Maximum Profit in Job Scheduling
      • 740. Delete and Earn
      • 87. Scramble String
      • 1140. Stone Game II
      • 322. Coin Change
      • 518. Coin Change II
      • 1048. Longest String Chain
      • 44. Wildcard Matching
      • 10. Regular Expression Matching
      • 32. Longest Valid Parentheses
      • 1043. Partition Array for Maximum Sum
      • *256. Paint House
      • 926. Flip String to Monotone Increasing
      • *1062. Longest Repeating Substring
      • *1216. Valid Palindrome III
    • 贪心
      • 56. Merge Intervals
      • 621. Task Scheduler
      • 135. Candy
      • 376. Wiggle Subsequence
      • 55. Jump Game
      • 134. Gas Station
      • 1005. Maximize Sum Of Array After K Negations
      • 406. Queue Reconstruction by Height
      • 452. Minimum Number of Arrows to Burst Balloons
      • 738. Monotone Increasing Digits
    • 单调栈
      • 739. Daily Temperatures
      • 503. Next Greater Element II
      • 901. Online Stock Span
      • 85. Maximum Rectangle
      • 84. Largest Rectangle in Histogram
      • 907. Sum of Subarray Minimums
      • 239. Sliding Window Maximum
    • 前缀和
      • 53. Maximum Subarray
      • 523. Continuous Subarray Sum
      • 304. Range Sum Query 2D - Immutable
      • 1423. Maximum Points You Can Obtain from Cards
      • 1031. Maximum Sum of Two Non-Overlapping Subarrays
    • 并查集
      • 684. Redundant Connection
      • 721. Accounts Merge
      • 547. Number of Provinces
      • 737. Sentence Similarity II
      • *305. Number of Islands II
    • 字典树trie
      • 208. Implement Trie
      • 211. Design Add and Search Words Data Structure
      • 1268. Search Suggestions System
      • *1166. Design File System
      • *642. Design Search Autocomplete System
    • 扫描线sweep line
      • 253. Meeting Room II
      • 1094. Car Pooling
      • 218. The Skyline Problem
      • *759. Employee Free Time
    • tree map
      • 729. My Calendar I
      • 981. Time Based Key-Value Store
      • 846. Hand of Straights
      • 480. Sliding Window Median
      • 318. Count of Smaller Numbers After Self
    • 数学类
      • 50. Pow(x, n)
      • *311. Sparse Matrix Multiplication
      • 382. Linked List Random Node
      • 398. Random Pick Index
      • 29. Divide Two Integers
    • 设计类
      • 1603. Design Parking System
      • 355. Design Twitter
      • 1396. Design Underground System
      • *359. Logger Rate Limiter
      • *353. Design Snake Game
      • *379. Design Phone Directory
      • *588. Design In-Memory File System
      • *1244. Design A Leaderboard
    • SQL
  • 机器学习
    • 数学基础
    • 评价指标
    • 线性回归
    • 逻辑回归
    • 树模型
    • 深度学习
    • 支持向量机
    • KNN
    • 无监督学习
    • k-means
    • 强化学习 RL
    • 自然语言处理 NLP
    • 大语言模型 LLM
    • 机器视觉 CV
    • 多模态 MM
    • 分布式机器学习
    • 推荐系统
    • 异常检测与风控
    • 模型解释性
    • 多任务学习
    • MLops
    • 特征工程
    • 在线学习
    • 硬件 cuda/triton
    • 产品case分析
    • 项目deep dive
    • 机器学习代码汇总
  • 系统设计
    • 面向对象设计
      • 电梯设计
      • 停车场设计
      • Unix文件系统设计
    • 系统设计
      • 设计社交网站Twitter
      • 设计视频网站Youtube
      • 短网址系统
      • 爬虫系统
      • 任务调度系统
      • 日志系统
      • 分布式缓存
      • 广告点击聚合系统
      • webhook
    • 机器学习系统设计
      • 推荐系统
      • 搜索引擎
      • Youtube视频推荐
      • Twitter推荐
      • 广告点击预测
      • 新闻推送推荐
      • POI推荐
      • Youtube视频搜索
      • 有害内容检测
      • 大模型RAG
      • 大模型Agent
      • 信贷风控
      • 朋友推荐
      • 去重复性/版权检测
      • 情感分析
      • 目标检测
      • 问答系统
      • 知识图谱问答
  • 行为面试
    • 领导力法则
    • 问答举例
  • 案例分享
    • 准备工作
    • 面试小抄
    • 面试之后
Powered by GitBook
On this page
  • 1. 面试要求
  • 2. 八股问题实例
  • 3. 手写ML代码实例
  • 参考

机器学习

PreviousSQLNext数学基础

Last updated 21 days ago

面试要有准备和技巧,但功夫在诗外。注意平时构建知识体系,读论文和做实验不断给体系添砖加瓦;面试前巩固机器学习理论和

  • 本章侧重理论,系统设计参考

1. 面试要求

  • 熟悉常见机器学习模型的原理、代码、如何实际应用、优缺点、常见问题

    • 归纳偏置(Inductive Bias),数据同分布(IID)

  • 考察范围如ML breadth, ML depth, ML application, coding。如果不知道答案不要乱编,承认不知道,并补充相关理解、做什么可以找到答案

    • 理解算法背后的原理,主要数学公式,并进行白板推导介绍 (don’t memorize the formula but demonstrate understanding)

    • 可能被持续追问为什么? 某个trick为什么能起作用?

    • 每一个算法的复杂度、参数量、计算量

    • 每一个算法如何scale,如何将算法map-reduce化

    • 较新的领域如,会考察最新论文细节

    • 机器学习代码部分见

2. 八股问题实例

模型细节与具体问题见模型子页面。以下实例回答注意如何安框架分条陈述

  • Generative vs Discriminative

    • Discriminative model learns the predictive distribution p(y|x) directly.

    • Generative model learns the joint distribution p(x, y) then obtains the predictive distribution based on Bayes' rule.

    • A generative model will learn categories of data while a discriminative model will simply learn the distinction between different categories of data.

    • Discriminative models will generally outperform generative models on classification tasks.

  • The bias-variance tradeoff

    • how to track the tradeoff: Cross-Validation

    • Bias Variance Decomposition: Error = Bias ** 2 + Variance + Irreducible Error

    • Ideally, one wants to choose a model that both accurately captures the regularities in its training data, but also generalizes well to unseen data. Unfortunately, it is typically impossible to do both simultaneously.

    • High-variance learning methods may be able to represent their training set well but are at risk of overfitting to noisy or unrepresentative training data.

    • In contrast, algorithms with high bias typically produce simpler models that don't tend to overfit but may underfit their training data, failing to capture important regularities.

  • 怎么解决over-fitting

    • how to track: underfitting means large training error, large generalization error; overfitting means small training error, large generalization error

    • 数据角度: 收集更多训练数据;数据增强(Data augmentation);或Pretrained model

    • 特征角度: Feature selection

    • 模型角度

      • 降低模型复杂度,如神经网络的层数、宽度,树模型的树深度、剪枝(pruning);

      • 模型正则化(Regularization),如正则约束L2,dropout

      • 集成学习方法,bagging

    • 训练角度: Early stop,weight decay

  • 怎么解决under-fitting

    • 特征角度: 增加新特征

    • 模型角度: 增加模型复杂度,减少正则化

    • 训练角度: 训练模型第一步就是要保证能够过拟合,增加epoch

  • 怎么解决样本不平衡问题

    • 评价指标:不要用准确率

    • down-sampling: faster convergence, save disk space, calibration. 样本多少可继续引申到样本的难易

    • up-weight: every sample contribute the loss equality

    • long tail classification,只取头部80%的label,其他label mark as others

    • 极端imbalance,99.99% 和0.01%,outlier detection的方法

  • 怎么解决数据缺失的问题

    • label data较少的情况: semi-supervised, few-shot

    • 特征列缺失:

      • 数据填充: mean, median, nan

      • 重要特征可通过额外建模进行预测

  • 怎么解决类别变量中的高基数(high-cardinality)特征

    • Feature Hashing

    • Target Encoding

    • Clustering Encoding

    • Embedding Encoding

  • 如何选择优化器

    • MSE, loglikelihood+GD

    • SGD-training data太大

    • ADAM-sparse input

  • 怎么解决Gradient Vanishing & Exploding

    • 梯度消失

      • stacking

      • 激活函数activations, 如ReLU: sigmoid只有靠近0的地方有梯度

      • LSTM (时间维度梯度)

      • Highway network

      • residual network (深度维梯度)

      • batch normalization

    • 梯度爆炸

      • gradient clipping

      • LSTM gate

  • 怎么解决分布不一致

    • distribution有feature和label的问题。label尽量多收集data,还是balance data的问题

    • data distribution 改变,就是做auto train, auto deploy. 如果性能drop太多,人工干预重新训练

    • 穿越特征也会造成分布不一致的表象,从避免穿越角度解决

  • 怎么解决线上线下不一致

    • model behaviors in production: data/feature distribution drift, feature bug

    • model generalization: offline metrics alignment

  • curse of dimensionality

    • Feature Selection

    • PCA

    • embedding

  • 怎么提升模型latency

    • 小模型或剪枝(pruning)

    • 知识蒸馏

    • squeeze model to 8bit or 4bit

  • 模型的并行

    • 线性/逻辑回归

    • xgboost

    • cnn

    • RNN

    • transformer

    • 在深度学习框架中,单个张量的乘法内部会自动并行

  • 冷启动

    • 充分利用已有信息 (meta data)

    • 选择适合的模型 (two tower)

    • 流量调控

  • Out-of-vocabulary

    • unknown

3. 手写ML代码实例

  • 手写SGD

  • 手写softmax的backpropagation

    • convolution layer的output size怎么算? 写出公式

  • 实现dropout,前向和后向

  • 实现focal loss

  • 手写LSTM

    • 给定LSTM结构,计算参数量

  • NLP:

    • 手写n-gram

    • 手写tokenizer

    • 白板介绍位置编码

    • 手写multi head attention (MHA)

  • 视觉:

    • 手写iou/nms

参考

  • https://defiant-show-3ca.notion.site/Deep-learning-specialization-b69a42ecb14446f39bd93fd0f15965d5

代码
3.3 机器学习系统设计
大模型
ML coding collections
https://imbalanced-learn.org/en/stable/user_guide.html
How to Handle Missing Data
ML code collections
手写KNN
手写K-means
手写AUC
手写两层MLP
手写CNN
BPE tokenizer
BPE tokenizer
https://github.com/2019ChenGong/Machine-Learning-Notes
https://github.com/ctgk/PRML
https://github.com/nxpeng9235/MachineLearningFAQ/blob/main/bagu.md
https://docs.qq.com/doc/DR0ZBbmNKc0l3RGR2
机器学习八股文的答案
ML, DL学习面试交流总结
Best Practices for ML Engineering
https://github.com/bitterengsci/algorithm
Pros and cons of various Machine Learning algorithms