mle-interview
  • 面试指南
  • 数据结构与算法
    • 列表
      • 912. Sort an Array
      • 215. Kth Largest Element
      • 977. Squares of a Sorted Array
      • 605. Can Place Flowers
      • 59. Spiral Matrix II
      • 179. Largest Number
      • 31. Next Permutation
    • 二分查找
      • 704. Binary Search
      • 69. Sqrt(x)
      • 278. First Bad Version
      • 34. Find First and Last Position of Element in Sorted Array
      • 33. Search in Rotated Sorted Array
      • 81. Search in Rotated Sorted Array II
      • 162. Find Peak Element
      • 4. Median of Two Sorted Arrays
      • 1095. Find in Mountain Array
      • 240. Search a 2D Matrix II
      • 540. Single Element in a Sorted Array
      • 528. Random Pick with Weight
      • 1300. Sum of Mutated Array Closest to Target
      • 410. Split Array Largest Sum
      • 1044. Longest Duplicate Substring
      • *644. Maximum Average Subarray II
      • *1060. Missing Element in Sorted Array
      • *1062. Longest Repeating Substring
      • *1891. Cutting Ribbons
    • 双指针
      • 26. Remove Duplicate Numbers in Array
      • 283. Move Zeroes
      • 75. Sort Colors
      • 88. Merge Sorted Arrays
      • 167. Two Sum II - Input array is sorted
      • 11. Container With Most Water
      • 42. Trapping Rain Water
      • 15. 3Sum
      • 16. 3Sum Closest
      • 18. 4Sum
      • 454. 4Sum II
      • 409. Longest Palindrome
      • 125. Valid Palindrome
      • 647. Palindromic Substrings
      • 209. Minimum Size Subarray Sum
      • 5. Longest Palindromic Substring
      • 395. Longest Substring with At Least K Repeating Characters
      • 424. Longest Repeating Character Replacement
      • 76. Minimum Window Substring
      • 3. Longest Substring Without Repeating Characters
      • 1004. Max Consecutive Ones III
      • 1658. Minimum Operations to Reduce X to Zero
      • *277. Find the Celebrity
      • *340. Longest Substring with At Most K Distinct Characters
    • 链表
      • 203. Remove Linked List Elements
      • 19. Remove Nth Node From End of List
      • 876. Middle of the Linked List
      • 206. Reverse Linked List
      • 92. Reverse Linked List II
      • 24. Swap Nodes in Pairs
      • 707. Design Linked List
      • 148. Sort List
      • 160. Intersection of Two Linked Lists
      • 141. Linked List Cycle
      • 142. Linked List Cycle II
      • 328. Odd Even Linked List
    • 哈希表
      • 706. Design HashMap
      • 1. Two Sum
      • 146. LRU Cache
      • 128. Longest Consecutive Sequence
      • 73. Set Matrix Zeroes
      • 380. Insert Delete GetRandom O(1)
      • 49. Group Anagrams
      • 350. Intersection of Two Arrays II
      • 299. Bulls and Cows
      • *348. Design Tic-Tac-Toe
    • 字符串
      • 242. Valid Anagram
      • 151. Reverse Words in a String
      • 205. Isomorphic Strings
      • 647. Palindromic Substrings
      • 696. Count Binary Substrings
      • 28. Find the Index of the First Occurrence in a String
      • *186. Reverse Words in a String II
    • 栈与队列
      • 225. Implement Stack using Queues
      • 54. Spiral Matrix
      • 155. Min Stack
      • 232. Implement Queue using Stacks
      • 150. Evaluate Reverse Polish Notation
      • 224. Basic Calculator
      • 20. Valid Parentheses
      • 1472. Design Browser History
      • 1209. Remove All Adjacent Duplicates in String II
      • 1249. Minimum Remove to Make Valid Parentheses
      • *281. Zigzag Iterator
      • *1429. First Unique Number
      • *346. Moving Average from Data Stream
    • 优先队列/堆
      • 692. Top K Frequent Words
      • 347. Top K Frequent Elements
      • 973. K Closest Points
      • 23. Merge K Sorted Lists
      • 264. Ugly Number II
      • 378. Kth Smallest Element in a Sorted Matrix
      • 295. Find Median from Data Stream
      • 767. Reorganize String
      • 1438. Longest Continuous Subarray With Absolute Diff Less Than or Equal to Limit
      • 895. Maximum Frequency Stack
      • 1705. Maximum Number of Eaten Apples
      • *1086. High Five
    • 深度优先DFS
      • 二叉树
      • 543. Diameter of Binary Tree
      • 101. Symmetric Tree
      • 124. Binary Tree Maximum Path Sum
      • 226. Invert Binary Tree
      • 104. Maximum Depth of Binary Tree
      • 951. Flip Equivalent Binary Trees
      • 236. Lowest Common Ancestor of a Binary Tree
      • 987. Vertical Order Traversal of a Binary Tree
      • 572. Subtree of Another Tree
      • 863. All Nodes Distance K in Binary Tree
      • 1110. Delete Nodes And Return Forest
      • 230. Kth Smallest element in a BST
      • 98. Validate Binary Search Tree
      • 235. Lowest Common Ancestor of a Binary Search Tree
      • 669. Trim a Binary Search Tree
      • 700. Search in a Binary Search Tree
      • 108. Convert Sorted Array to Binary Search Tree
      • 450. Delete Node in a BST
      • 938. Range Sum of BST
      • *270. Closest Binary Search Tree Value
      • *333. Largest BST Subtree
      • *285. Inorder Successor in BST
      • *1485. Clone Binary Tree With Random Pointer
      • 回溯
      • 39. Combination Sum
      • 78. Subsets
      • 46. Permutation
      • 77. Combinations
      • 17. Letter Combinations of a Phone Number
      • 51. N-Queens
      • 93. Restore IP Addresses
      • 22. Generate Parentheses
      • 856. Score of Parentheses
      • 301. Remove Invalid Parentheses
      • 37. Sodoku Solver
      • 图DFS
      • 126. Word Ladder II
      • 212. Word Search II
      • 79. Word Search
      • 399. Evaluate Division
      • 1376. Time Needed to Inform All Employees
      • 131. Palindrome Partitioning
      • 491. Non-decreasing Subsequences
      • 698. Partition to K Equal Sum Subsets
      • 526. Beautiful Arrangement
      • 139. Word Break
      • 377. Combination Sum IV
      • 472. Concatenated Words
      • 403. Frog Jump
      • 329. Longest Increasing Path in a Matrix
      • 797. All Paths From Source to Target
      • 695. Max Area of Island
      • 341. Flatten Nested List Iterator
      • 394. Decode String
      • *291. Word Pattern II
      • *694. Number of Distinct Islands
      • *1274. Number of Ships in a Rectangle
      • *1087. Brace Expansion
    • 广度优先BFS
      • 102. Binary Tree Level Order Traversal
      • 103. Binary Tree Zigzag Level Order Traversal
      • 297. Serialize and Deserialize Binary Tree
      • 310. Minimum Height Trees
      • 127. Word Ladder
      • 934. Shortest Bridge
      • 200. Number of Islands
      • 133. Clone Graph
      • 130. Surrounded Regions
      • 752. Open the Lock
      • 815. Bus Routes
      • 1091. Shortest Path in Binary Matrix
      • 542. 01 Matrix
      • 1293. Shortest Path in a Grid with Obstacles Elimination
      • 417. Pacific Atlantic Water Flow
      • 207. Course Schedule
      • 210. Course Schedule II
      • 787. Cheapest Flights Within K Stops
      • 444. Sequence Reconstruction
      • 994. Rotting Oranges
      • 785. Is Graph Bipartite?
      • *366. Find Leaves of Binary Tree
      • *314. Binary Tree Vertical Order Traversal
      • *269. Alien Dictionary
      • *323. Connected Component in Undirected Graph
      • *490. The Maze
    • 动态规划
      • 70. Climbing Stairs
      • 72. Edit Distance
      • 377. Combination Sum IV
      • 1335. Minimum Difficulty of a Job Schedule
      • 97. Interleaving String
      • 472. Concatenated Words
      • 403. Frog Jump
      • 674. Longest Continuous Increasing Subsequence
      • 62. Unique Paths
      • 64. Minimum Path Sum
      • 368. Largest Divisible Subset
      • 300. Longest Increasing Subsequence
      • 354. Russian Doll Envelopes
      • 121. Best Time to Buy and Sell Stock
      • 132. Palindrome Partitioning II
      • 312. Burst Balloons
      • 1143. Longest Common Subsequence
      • 718. Maximum Length of Repeated Subarray
      • 174. Dungeon Game
      • 115. Distinct Subsequences
      • 91. Decode Ways
      • 639. Decode Ways II
      • 712. Minimum ASCII Delete Sum for Two Strings
      • 221. Maximal Square
      • 1277. Count Square Submatrices with All Ones
      • 198. House Robber
      • 213. House Robber II
      • 1235. Maximum Profit in Job Scheduling
      • 740. Delete and Earn
      • 87. Scramble String
      • 1140. Stone Game II
      • 322. Coin Change
      • 518. Coin Change II
      • 1048. Longest String Chain
      • 44. Wildcard Matching
      • 10. Regular Expression Matching
      • 32. Longest Valid Parentheses
      • 1043. Partition Array for Maximum Sum
      • *256. Paint House
      • 926. Flip String to Monotone Increasing
      • *1062. Longest Repeating Substring
      • *1216. Valid Palindrome III
    • 贪心
      • 56. Merge Intervals
      • 621. Task Scheduler
      • 135. Candy
      • 376. Wiggle Subsequence
      • 55. Jump Game
      • 134. Gas Station
      • 1005. Maximize Sum Of Array After K Negations
      • 406. Queue Reconstruction by Height
      • 452. Minimum Number of Arrows to Burst Balloons
      • 738. Monotone Increasing Digits
    • 单调栈
      • 739. Daily Temperatures
      • 503. Next Greater Element II
      • 901. Online Stock Span
      • 85. Maximum Rectangle
      • 84. Largest Rectangle in Histogram
      • 907. Sum of Subarray Minimums
      • 239. Sliding Window Maximum
    • 前缀和
      • 53. Maximum Subarray
      • 523. Continuous Subarray Sum
      • 304. Range Sum Query 2D - Immutable
      • 1423. Maximum Points You Can Obtain from Cards
      • 1031. Maximum Sum of Two Non-Overlapping Subarrays
    • 并查集
      • 684. Redundant Connection
      • 721. Accounts Merge
      • 547. Number of Provinces
      • 737. Sentence Similarity II
      • *305. Number of Islands II
    • 字典树trie
      • 208. Implement Trie
      • 211. Design Add and Search Words Data Structure
      • 1268. Search Suggestions System
      • *1166. Design File System
      • *642. Design Search Autocomplete System
    • 扫描线sweep line
      • 253. Meeting Room II
      • 1094. Car Pooling
      • 218. The Skyline Problem
      • *759. Employee Free Time
    • tree map
      • 729. My Calendar I
      • 981. Time Based Key-Value Store
      • 846. Hand of Straights
      • 480. Sliding Window Median
      • 318. Count of Smaller Numbers After Self
    • 数学类
      • 50. Pow(x, n)
      • *311. Sparse Matrix Multiplication
      • 382. Linked List Random Node
      • 398. Random Pick Index
      • 29. Divide Two Integers
    • 设计类
      • 1603. Design Parking System
      • 355. Design Twitter
      • 1396. Design Underground System
      • *359. Logger Rate Limiter
      • *353. Design Snake Game
      • *379. Design Phone Directory
      • *588. Design In-Memory File System
      • *1244. Design A Leaderboard
    • SQL
  • 机器学习
    • 数学基础
    • 评价指标
    • 线性回归
    • 逻辑回归
    • 树模型
    • 深度学习
    • 支持向量机
    • KNN
    • 无监督学习
    • k-means
    • 强化学习 RL
    • 自然语言处理 NLP
    • 大语言模型 LLM
    • 机器视觉 CV
    • 多模态 MM
    • 分布式机器学习
    • 推荐系统
    • 异常检测与风控
    • 模型解释性
    • 多任务学习
    • MLops
    • 特征工程
    • 在线学习
    • 硬件 cuda/triton
    • 产品case分析
    • 项目deep dive
    • 机器学习代码汇总
  • 系统设计
    • 面向对象设计
      • 电梯设计
      • 停车场设计
      • Unix文件系统设计
    • 系统设计
      • 设计社交网站Twitter
      • 设计视频网站Youtube
      • 短网址系统
      • 爬虫系统
      • 任务调度系统
      • 日志系统
      • 分布式缓存
      • 广告点击聚合系统
      • webhook
    • 机器学习系统设计
      • 推荐系统
      • 搜索引擎
      • Youtube视频推荐
      • Twitter推荐
      • 广告点击预测
      • 新闻推送推荐
      • POI推荐
      • Youtube视频搜索
      • 有害内容检测
      • 大模型RAG
      • 大模型Agent
      • 信贷风控
      • 朋友推荐
      • 去重复性/版权检测
      • 情感分析
      • 目标检测
      • 问答系统
      • 知识图谱问答
  • 行为面试
    • 领导力法则
    • 问答举例
  • 案例分享
    • 准备工作
    • 面试小抄
    • 面试之后
Powered by GitBook
On this page
  • 1. requirements
  • 2. ML task & pipeline
  • 3. data collection
  • 4. feature
  • 5. model
  • 6. evaluation
  • 7. deployment & serving
  • 8. monitoring & maintenance
  • 9. 优化与问答
  • reference
  1. 系统设计
  2. 机器学习系统设计

广告点击预测

广告系统是广告与用户流量的匹配。

  • 定向,粗排,精排,检索,bidding,新广告,中长尾广告,排期,保量,波动分析,多广告位拍卖,DPA,素材优化,自动化审核,用户择优

  • 转化漏斗:曝光 —> 点击 —> 转化

1. requirements

场景类

  • We have a bidding server which makes bids and produces logs. Also, we have information about impressions and conversions (usually with some delays). We want to have a model which using this data will predict a probability of click (conversion转化)

  • What types of ads are we predicting clicks for (display ads, video ads, searched ads, sponsored content)?

  • Are there specific user segments or contexts we should consider (demographics, location, browsing history)?

  • Do we have fatigue period (where ad is no longer shown to the users where there is no interest, for X days)?

  • What type of user-ad interaction data do we have access to can we use it for training our models?

  • Do we have negative feedback features (such as hide ad, block)?

  • How do we collect negative samples (not clicked, negative feedback)?

功能类

  • personalization

  • diversity, 不能把相似广告放一起

  • explicit negative feedback, multi-task ranking增加一个head, label是hide block

objective

  • primary business objective: maximize revenue

  • How will we define and measure the success of click predictions (click-through rate, conversion rate)?

  • personalization, diversity, Handle explicit negative feedback

constraint

  • scale: number of users

  • latency: 50ms to 100ms

  • Imbalanced Data: Click events are sparse relative to impressions, requiring techniques to address imbalance.

2. ML task & pipeline

  • 召回(match/retrieval):流量访问时,从可选的广告库全集中,筛选合适的广告候选子集

  • 排序(rank):对于给定的广告候选子集,给出相应的预估值。

  • 策略(bidding&strategy):根据预估值,通过控制广告的出价、排序公式等,影响流量的最终分配

业务过程

  1. advertiser create ads

  2. ads indexing (inverted index, we can use elastic search)

    • 如何减少广告索引的latency,inverted index + db replica + cache

  3. users search for certain keywords

  4. recall

  5. ranking

特点

  • Imbalance data

3. data collection

Data Sources

  • Users

    • demographics

  • Ads

    • category

  • user-ad interaction

  • user-user friend

  • Labelling

    • negative sampling for imbalance

4. feature

It is important for CTR prediction to learn implicit feature interactions behind user click behaviors.

Contextual Features

  • Time: Time of day, day of the week.

  • Device: Mobile vs. desktop, OS, browser.

  • Location: User’s current location.

User-Ad Interaction Features

  • Collaborative Filtering: Similar users clicked on similar ads.

  • Real-time Signals: Recent interactions, session data.

  • Implicit Feedback: Hover time, scroll depth.

5. model

广告算法主流模型(广告算法基本都是point-wise训练方式,因为广告是很少以列表的形式连续呈现)

  • Logistic regression (feature crossing)

  • GBDT

  • GBDT+LR

  • NN

  • Deep and Cross Network

  • FM (FFM)

  • DeepFM

  • DIN (DIEN)

  • DSSM双塔模型

  • ESSM

  • Wide and Deep

  • Multi-task learning

6. evaluation

Offline metrics

  • Log Loss

  • ROC-AUC

Online metrics

  • CTR

  • Overall revenue (or ROI)

  • Time Spend

7. deployment & serving

  • A/B testing

  • Real-Time Inference

    • low-latency serving framework (e.g., TensorFlow Serving) to generate predictions within 50-100ms

    • Cache frequently requested user-ad pairs to reduce latency

8. monitoring & maintenance

Detecting Issues

  • Performance Degradation: Monitor CTR, revenue, and latency in real-time.

  • Data Drift: Compare feature distributions (e.g., user demographics) over time.

Continuous Improvement

  • Retrain models periodically with fresh data.

  • Incorporate new features (e.g., video ad engagement signals).

  • Experiment with advanced architectures (e.g., transformer-based models).

9. 优化与问答

  • bad ads

    • 侧重解决数据来源(人工标注), 以及数据量比较小的问题

    • LLM fine tune teacher, teacher做bulk inference, distill到student

  • calibration:

    • fine-tuning predicted probabilities to align them with actual click probabilities

  • data leakage:

    • info from the test or eval dataset influences the training process

    • target leakage, data contamination (from test to train set)

  • catastrophic forgetting

    • model trained on new data loses its ability to perform well on previously learned tasks

  • gdpr、dma这些rule对广告的影响

  • uplift: 预测增量值(lift的部分), 预测某种干预对于个体状态或行为的因果效应(识别营销敏感人群)。

Lift=P(buy∣treatment)−P(buy∣notreatment)Lift = P(buy|treatment) - P(buy|no treatment)Lift=P(buy∣treatment)−P(buy∣notreatment)

reference

精读

扩展

PreviousTwitter推荐Next新闻推送推荐

Last updated 27 days ago

Realtime Advertisement Clicks Aggregator
Unpacking How Ad Ranking Works at Pinterest
Building an Ad Click Prediction Machine Learning System: Problem Statement and Metrics
Google Ads Ad Rank Explained - Ad Rank Formula, Thresholds, & How to Improve
On the Factory Floor: ML Engineering for Industrial-Scale Ads Recommendation Models
snap: Machine Learning for Snapchat Ad Ranking
架构设计之广告系统架构解密
How ads indexing works at Pinterest
互联网广告系统:架构、算法与智能化
Design an evaluation framework for ads ranking
uplift: 一文读懂增益模型Uplift Model
github.com/alirezadir/Machine-Learning-Interviews/blob/main/src/MLSD/mlsd-ads-ranking.md
Amazon Ads Architecture at Scale - ReInvent 2021
pinterest: Building a real-time user action counting system for ads
Ad Click Prediction | Machine learning system design
广告和推荐在召回候选集时的区别? - 武侠超人的回答 - 知乎
计算广告与推荐系统有哪些区别? - 刍狗的回答 - 知乎
推荐算法岗是否存在严重人才过剩? - 程序员老刘的回答 - 知乎
广告推荐系统中的商品冷启动实践 - 丹丹的文章 - 知乎
Hulu:视频广告系统中的算法实践 - DataFunTalk的文章 - 知乎
On the Factory Floor: ML Engineering for Industrial-Scale Ads Recommendation Models
在线广告系统-计算机王冠上的明珠
Instagram ML Question - Design a Ranking Model (Full Mock Interview with Senior Meta ML Engineer)