POI推荐

场景: yelp, 美团, airbnb

  • Design a system to find nearby restaurants

  • Design a system to match drivers with riders for Uber

  • Design a system to compute ETA for food delivery

特点: 如果是event 推荐这种注重实效性、位置性的推荐,event发生后不存在了,所有item可以认为都是冷启动 对于位置的挖掘可采用图特征或模型

1. requirements

products/use cases

objective

  • connect people with great local businesses

constraint

  • data

  • volume

  • latency

2. ML task & pipeline

预测目标

  • 是否点击

  • 停留时间(dwell time), 可转化为t/(t+1)来逼近sigmoid函数,t很大时接近1;很小时接近0

3. data collection

  • user

    • User location: For localized recommendations we need to consider only businesses near the city or neighborhood where the user is located

4. feature

  • sparse

  • dense

5. model

retrieval

  • 取决于filter

ranking

rerank

6. evaluation

  • offline

    • NDCG

    • MAP

  • online: A/B testing holdout canary

7. deploy & serving

  • batch serving

  • online serving

8. monitor & maintenance

9. 优化与问答

冷启动的item

  • 双塔可以采用default embedding, 而不是random initial

reference

Last updated