无监督
1. 统计学习
Clustering
Centroid models: k-means clustering
Connectivity models: Hierarchical clustering
Density models: DBSCAN
Gaussian Mixture Models
EM是解KMS算法的方法,EM还可以解其他问题例如GMM
Latent semantic analysis
Hidden Markov Models (HMMs)
Markov processes
Transition probability and emission probability
Viterbi algorithm
Dimension reduction techniques
Principal Component Analysis (PCA)
Independent Component Analysis (ICA)
T-SNE
2. 深度学习自监督
contrastive learning 对比学习
相似的实例在投影空间中比较接近,不相似的实例在投影空间中距离比较远
3. 应用场景
实际应用中,无监督往往更注重强特征提取
reference
Last updated