广告点击预测

广告系统是广告与用户流量的匹配。

  • 定向,粗排,精排,检索,bidding,新广告,中长尾广告,排期,保量,波动分析,多广告位拍卖,DPA,素材优化,自动化审核,用户择优

  • 转化漏斗:曝光 —> 点击 —> 转化

1. requirements

场景类

  • We have a bidding server which makes bids and produces logs. Also we have information about impressions and conversions (usually with some delays). We want to have a model which using this data will predict a probability of click (conversion)

  • What types of ads are we predicting clicks for (e.g., display ads, video ads, sponsored content)?

  • Are there specific user segments or contexts we should consider (e.g., user demographics, browsing history)?

  • Do we have fatigue period (where ad is no longer shown to the users where there is no interest, for X days)?

  • What type of user-ad interaction data do we have access to can we use it for training our models?

  • Do we have negative feedback features (such as hide ad, block, etc)?

  • How do we collect negative samples? (not clicked, negative feedback).

功能类

  • personalization

  • diversity, 不能把相似广告放一起

  • explicit negative feedback, multi-task ranking增加一个head, label是hide block

objective

  • primary business objective: maximize revenue

  • How will we define and measure the success of click predictions (e.g., click-through rate, conversion rate)?

constraint

  • scale: number of users

  • latency: 50ms to 100ms

2. ML task & pipeline

  • 召回(match/retrieval):流量访问时,从可选的广告库全集中,筛选合适的广告候选子集

  • 排序(rank):对于给定的广告候选子集,给出相应的预估值。

  • 策略(bidding&strategy):根据预估值,通过控制广告的出价、排序公式等,影响流量的最终分配

业务过程:

  1. advertiser create ads

  2. ads indexing (inverted index, we can use elastic search)

    • 如何减少广告索引的latency,inverted index + db replica + cache

  3. users search for certain keywords

  4. recall

  5. ranking

特点

  • Imbalance data

3. data collection

Data Sources

  • Users

    • demographics

  • Ads

    • category

  • user-ad interaction

  • user-user friend

  • Labelling

    • negative sampling for imbalance

4. feature

It is important for CTR prediction to learn implicit feature interactions behind user click behaviors.

5. model

广告算法主流模型. 广告算法基本都是point-wise训练方式,因为广告是很少以列表的形式连续呈现

  • Logistic regression (feature crossing)

  • GBDT

  • GBDT+LR

  • NN

  • Deep and Cross Network

  • FM (FFM)

  • DeepFM

  • DIN (DIEN)

  • DSSM双塔模型

  • ESSM

  • Wide and Deep

uplift: 预测增量值(lift的部分), 预测某种干预对于个体状态或行为的因果效应(识别营销敏感人群)。

Lift=P(buytreatment)P(buynotreatment)Lift = P(buy|treatment) - P(buy|no treatment)

6. evaluation

Offline metrics

  • Log Loss

  • ROC-AUC

Online metrics

  • CTR

  • Overall revenue (or ROI)

  • Time Spend

7. deployment & serving

  • A/B testing

8. monitoring & maintenance

9. 优化与问答

  • bad ads

    • 侧重解决数据来源(人工标注), 以及数据量比较小的问题

    • LLM fine tune teacher, teacher做bulk inference, distill到student

  • calibration:

    • fine-tuning predicted probabilities to align them with actual click probabilities

  • data leakage:

    • info from the test or eval dataset influences the training process

    • target leakage, data contamination (from test to train set)

  • catastrophic forgetting

    • model trained on new data loses its ability to perform well on previously learned tasks

  • gdpr、dma这些rule对广告的影响

reference

精读

扩展

Last updated