机器学习

面试需要一些准备和技巧,但功夫在诗外。平时注意构建知识体系,论文和实验不断给体系添砖加瓦。本章侧重理论部分,系统设计参考3.3 机器学习系统设计

1. 面试要求

  • 熟悉常见模型的原理、代码、如何实际应用、优缺点、常见问题

    • 归纳偏置(Inductive Bias),数据同分布(IID)

  • 考察范围包括ML breadth, ML depth, ML application, coding

    • 算法背后的数学原理,写出主要数学公式,并能进行白板推导介绍

    • 一些较新的领域如大模型,会考察论文细节

    • 可能被持续追问为什么? 某个trick为什么能起作用?

    • 每一个算法如何scale,如何将算法map-reduce化

    • 每一个算法的复杂度、参数量、计算量

2. 八股问题实例

模型细节与八股见具体模型页面

  • Generative vs Discriminative

    • A generative model will learn categories of data while a discriminative model will simply learn the distinction between different categories of data.

    • Discriminative models will generally outperform generative models on classification tasks. Discriminative model learns the predictive distribution p(y|x) directly while generative model learns the joint distribution p(x, y) then obtains the predictive distribution based on Bayes' rule.

  • The bias-variance tradeoff

    • Bias Variance Decomposition: Error = Bias ** 2 + Variance + Irreducible Error

    • Ideally, one wants to choose a model that both accurately captures the regularities in its training data, but also generalizes well to unseen data. Unfortunately, it is typically impossible to do both simultaneously.

    • High-variance learning methods may be able to represent their training set well but are at risk of overfitting to noisy or unrepresentative training data.

    • In contrast, algorithms with high bias typically produce simpler models that don't tend to overfit but may underfit their training data, failing to capture important regularities.

  • 怎么解决over-fitting

    • track: underfitting means large training error, large generalization error; overfitting means small training error, large generalization error

    • 数据角度,收集更多训练数据(more data);求其次,数据增强(Data augmentation);或Pretrained model

    • 特征角度,Feature selection

    • 模型角度

      • 降低模型复杂度,如神经网络的层数、宽度,树模型的树深度、剪枝;

      • 模型正则化(Regularization),如正则约束L2,dropout

      • 集成学习方法,bagging

    • 训练角度,Early stop,weight decay

  • 怎么解决under-fitting

    • 特征角度,增加新特征

    • 模型角度,增加模型复杂度,减少正则化系数

    • 训练角度,训练模型第一步就是要保证能够过拟合,增加epoch

  • 怎么解决样本不平衡问题

    • 评价指标:AP(average_precision_score)

    • downsampling: faster convergence, save disk space, calibration. 样本多少可继续引申到样本的难易

    • upweight: every sample contribute the loss equality

    • long tail classification,只取头部80%的label,其他label mark as others

    • 极端imbalance,99.99% 和0.01%,outlier detection的方法

  • 怎么解决数据缺失的问题

  • 怎么解决类别变量中的高基数特征 high-cardinality

    • Feature Hashing

    • Target Encoding

    • Clustering Encoding

    • Embedding Encoding

  • 如何选择优化器

    • MSE, loglikelihood+GD

    • SGD-training data太大量

    • ADAM-sparse input

  • 怎么解决Gradient Vanishing & Exploding

    • 梯度消失

      • 激活函数activations, 如ReLU

      • residual network

      • batch normalization

    • 梯度爆炸

      • gradient clipping

      • LSTM gate

  • 数据收集

    • production data, label

    • Internet dataset

  • 分布不一致怎么解决

    • distribution有feature和label的问题。label尽量多收集data,还是balance data的问题

    • data distribution 改变,就是做auto train, auto deploy. 如果性能drop太多,人工干预重新训练

    • 穿越特征也会造成分布不一致的表象,从避免穿越角度解决

  • 线上线下不一致

    • model behaviors in production: data/feature distribution drift, feature bug

    • model generalization: offline metrics alignment

  • curse of dimensionality

    • Feature Selection

    • PCA

    • embedding

  • 怎么提升模型的latency

    • 小模型

    • 知识蒸馏

    • squeeze model to 8bit or 4bit

  • 模型的并行

    • 线性/逻辑回归

    • xgboost

    • cnn

    • RNN

    • transformer

    • 在深度学习框架中,单个张量的乘法内部会自动并行

3. 手写ML代码实例

ML code challenge

  • 手写softmax的backpropagation

  • 手写AUC

  • 手写SGD

  • 手写两层fully connected网络

  • 手写CNN

    • convolution layer的output size怎么算? 写出公式

  • 实现dropout,前向和后向

  • 实现focal loss

  • 手写LSTM

    • 给一个LSTM network的结构,计算参数量

  • NLP:

  • 视觉:

    • 手写iou/nms

参考

Last updated