去重复性/版权检测
1. requirements
机器学习系统中处理相似商品推荐时,去重复(deduplication)可以确保用户获得多样化且相关的商品选项
商品推荐:检测商品是否为重复条目(例如不同商家上传了相同的商品图片或描述)
视频版权检测:检测用户上传的视频是否与现有视频库中的内容重复,以保护版权
user上传的视频是否和a large media collection里的视频有重复
Non-functional
能够高效处理大规模数据(数百万条商品或视频)
Scalability: Handle millions of products/videos
Cost-effective solution for large-scale deployment
支持近实时检测(商品上传或视频上传后快速完成重复性判断)
Latency requirement: < 500ms for real-time checking
系统需兼顾计算效率和检索准确率
Accuracy: High precision to avoid false copyright claims
2. ML task & pipeline
Input -> Feature Extraction -> Embedding Generation -> Similarity Search -> Decision Making
基本属性来检测重复(ID, 相似度)
局部敏感哈希, video做hashing,用bloom filter
做embedding,放vector database,找nearest neighbor
3. data collection
商品去重:
商品图片、标题、描述文本等
数据来源于电商平台上的商品库
视频版权检测:
用户上传的视频
已知的版权视频库(large media collection)
4. feature
products:
Image features: CNN-based feature extractor
Text features: BERT/transformers for title/description
videos:
Frame-level Features
Key frame extraction
CNN features for frames
Motion vectors
Audio fingerprinting
MFCC features
Audio fingerprints
Spectrograms
Temporal Features
Scene transitions
Temporal pyramids
Sequential patterns
5. model
First Stage (Coarse Filtering)
LSH-based quick filtering
Quick lookup in Bloom filter
Second Stage (Fine-grained Matching)
Deep neural network for similarity scoring
6. evaluation
Precision@K
Recall@K
Mean Average Precision (MAP)
False Positive Rate
Detection Speed
7. deploy & serving
[Client] -> [Load Balancer] -> [API Gateway] -> [Feature Extraction Service] -> [Vector Search Service] -> [Decision Service]
Scaling Strategy:
Horizontal scaling for feature extraction
Distributed vector database (FAISS/Milvus)
Caching layer for frequent queries
Message queue for async processing
8. monitoring & maintenance
System Health
Latency (p50, p90, p99)
Error rates
Resource utilization
Model Performance
False positive rate
False negative rate
Model drift
Business Metrics
Number of detected duplicates
Copyright violation detection rate
Reference
Last updated